Finite groups with small character degrees and large prime divisors. II
نویسندگان
چکیده
منابع مشابه
Prime Divisors of Irreducible Character Degrees
Let G be a finite group. We denote by ρ(G) the set of primes which divide some character degrees of G and by σ(G) the largest number of distinct primes which divide a single character degree of G. We show that |ρ(G)| ≤ 2σ(G) + 1 when G is an almost simple group. For arbitrary finite groups G, we show that |ρ(G)| ≤ 2σ(G) + 1 provided that σ(G) ≤ 2.
متن کاملNonsolvable Groups with No Prime Dividing Three Character Degrees
Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G, and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1969
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1969.29.311